您的位置:首页 > 热点 >

船载雷达回程误差分析及消隙设计

摘要:本文提出一种采用电消隙技术减小回程误差的方法。通过对回程误差进行分析,从结构和电路两方面分别介绍减小回程误差的措施,并结合船栽雷达设备重点对电消隙技术进行研究分析。与传统的单纯机械消隙相比,电消隙技术显著提高了船载雷达的测量精度。关键词:船载雷达;回程误差;电消隙;力矩偏置 随着航天事业的飞速发展。现代航天任务对测控站测量系统的测量准确度提出了更高的要求。与陆地雷达伺服系统相比,测量船在海上受风浪影响而不停地运动,船载雷达随运动载体的运动也在不停地运动,为了进行精确定轨,测量精度尤为重要。一般都要求测角系统既有良好的跟踪性能,又要有尽可能高的测角精度。对直接影响跟踪系统精度和跟踪性能的重要部件,更要综合考虑,使整个系统性能达到最优。 影响雷达测角精度的因素比较多,误差的产生部位和性质也不尽相同。其中,回程误差是影响测角精度的一个重要因素。由于天线经常工作在零速附近,传动链中齿隙的存在会使得传动产生相应滞后,甚至会产生极限环振荡,在动力传动链中,传统的机械消隙已经无法满足精度要求,本文提出了双马达驱动电消隙技术,它具有更多优越性。1 回程误差分析1.1 回程误差的概念 如果传动装置的组成零部件制造、装配得绝对准确,对使用过程中的温度变形、弹性交形也予以忽略,则传动过程小,输出轴转角φo与输入轴转角φi之间应符合下列理想关系: 式中,it为传动装置的总传动比。φo和φi之间成线性比例关系。 实际上,组成零部件不可能制造、装配得绝对淮确,而在使用过程中还会存在温度变形和弹性变形,因此,在传动过程个输出轴的转角总会存在误差。 回程误差可以定义为:当输入轴开始反向回转后到输出轴也跟着反向时,输出轴在转角上的滞后量,用符号△R表示。由于回程误差的存在,反向回转后,输出轴的φo和输入轴的φi之间的关系曲线如图1所示,它与电工学中的磁滞回线十分相似。

回程误差也称为空程误差,相似含义的名称还有齿隙、侧隙、空回、死程等。可以作如下设想:使输入轴固定不动,然后在正反两个极限位置上旋转输出轴,这时输出轴所具有的游移量即该传动装置在输出轴上的回程误差。也可以使输出轴固定不动,然后在正反两个极限位置上旋转输入轴,这时输入轴所具有的游移量即该传动装置在输入轴上的回程误差。回程误差的静态测量就是按上述方法来进行的。

标签: 船载 雷达 误差分析 消隙

相关阅读